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Abstract

The shape of the solid-state proton NMR Free Induction Decay (FID) of a molten polyethylene (PE) sample has been examined as a
function of time during isothermal crystallization in situ. The crystallization rate as a function of crystallization temperature is derived and
the results discussed within a thermodynamic framework. A slight increase in molecular correlation times (in the microsecond range) with
crystallization time was revealed for both the crystalline and intermediate phases. In particular, the molecular mobility within the inter-
mediate phase is found to be approximately four times faster than in the crystalline phase. During isothermal crystallization the more mobile
molecular phase is claimed to be composed of two “sub-phases”, an amorphous phase and a molten phase. The latter “sub-phase”, which
represents 100% of the polymer at the start of the crystallization (completely molten sample), transforms completely to crystalline,
amorphous and intermediate phases during the crystallization process. The actual temperature region of super-cooling, which can be probed
by the present NMR technique, covers approximately 10 K and is discussed in the text.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that crystallization and processing of
polymers will affect their morphology [1,2]. In particular,
much effort has been exercised in understanding the effect
of crystallization on morphology [2–6], as this may affect
the physical properties of the polymer [7]. Having once
established that certain polymeric materials are capable of
crystallization, fundamental studies related to the mode and
kinetics of crystallization have been reported [2,8–10].
Numerous reports in the literature show that NMR spectro-
scopy is a powerful tool in characterizing polymer morphol-
ogy [3–6,11,12]. For instance, NMR spectroscopy has given
evidence that at least three phases are involved during crys-
tallization of polyethylene (PE) and that the degree of crys-
tallinity is dependent on the preparation of the polymer
[3,4,11,12].

We have recently presented an in situ NMR technique,
which enables monitoring of phase changes of PE during
melting [13] and crystallization [14]. Due to an increasing
rate of crystallization with increasing super-cooling, this
NMR technique will only be appropriate within a restricted
temperature region of super-cooling. For instance, if the PE

crystallizes too rapidly, reliable crystallization rates cannot
be extracted. Temperature regulation control, heat transfer,
NMR relaxation times and crystallization rates are para-
meters which will determine the actual temperature range
at which isothermal crystallization can be monitored by the
present NMR technique. Spin–lattice relaxation times can
be found in the literature [15–17]. However, the actual
region of super-cooling, which enables reliable crystalliza-
tion rates to be determined by the present NMR technique,
can at present only be established experimentally.

Some NMR results reported by Kristiansen et al. [14]
suggest that the spin–spin relaxation time (T2) of the amor-
phous phase of PE as a function of crystallization time can
be described by an Avrami type of function. In the present
work, we will look more into this matter by applying the
solid-state proton NMR Free Induction Decay (FID)-analy-
sis technique [13,14,18] to monitor the phase changes taking
place during isothermal crystallization of PE,at different
temperatures. Also, information regarding molecular
dynamics within the crystalline and the intermediate phases
during isothermal crystallization will be reported.

The current work is part of an activity aiming at evaluat-
ing the capability of the solid-state proton NMR FID tech-
nique to monitor phase changes and molecular dynamics
during crystallization and melting of PE, in situ.
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2. Experimental

2.1. Material

The two PE samples used in this work were received from
Borealis AS and contained 4–5 butyl branches per 1000
main chain carbons (sample A) and 4–5 butyl branches
per 10 000 main chain carbons (sample B). The correspond-
ing molecular weights wereMW � 66 000 (sample A) and
MW � 22 000 (sample B), respectively. The type and degree
of branching were determined by high-resolution13C
NMR13. Both samples were single site polymerized poly-
mers. The samples were initially kept at 420 K for 30 min
within the NMR magnet to ensure complete melting.
Samples A and B were then cooled to 400 and 408 K for
10 min, respectively, before the temperature was set to the
actual temperature at which isothermal crystallization was
monitored. The time of the last temperature setting was
defined as the onset of crystallization (zero time). Isother-
mal crystallization were monitored in situ at 391, 392, 393,
393.5, 394, 394.5 and 395 K for sample A and 399, 400, 401
and 402 K for sample B.

2.2. NMR

All NMR measurements were performed on a Bruker
DMX 200 AVANCE instrument operating at 200 MHz
proton resonance frequency. A high-power1H NMR probe
capable of producing 908 radio frequency (r.f.) pulses of
approximately 1.5ms was used. Each point of the FID
was sampled every 0.2ms. To avoid pulse breakthrough, a
receiver blanking time (“dead time”) of 2ms was applied.
One scan was acquired in each experiment. Between 200
and 300 experiments were performed depending on crystal-
lization temperature (the lowest number is for the lowest
temperature investigated). The time delay between each
experiment was initially set to 15 s, which is more than 5
times the longer spin–lattice relaxation timeT1, to ensure
quantitative sampling of the FID. This time delay was
changed twice during the experiment to 75 and 625 s,
respectively (only one increase was done for the crystalliza-
tion investigated at 392 K). The actual phase parameters
were adjusted manually to give a pure absorption spectrum
in order to ensure that only the real part of the FID was
sampled.

Each FID was sampled for 4.4 ms, resulting in 22 K of
data points. Before transferring the data to a PC for post
processing, the data matrix was reduced in size by selecting
the first 200 data points (from 2 to 42ms) and the next 500
data points (42ms–4.4 ms, i.e. every 44 point) of the
residual part of the FID. This particular selection of data
points was favored by visual inspection of all sampled FIDs,
simultaneously. This data reduction, or filtering, was
performed simply to speed up the subsequent calculations
when using an Excel spread sheet and the program “solver”.

The temperature within the probe was calibrated by a

NMR thermometer of ethylene glycol and controlled by a
Bruker B-VT2000 unit. The actual temperature was esti-
mated to be stable and accurate to within^0.5 K.

3. Theoretical outline

Due to r.f.-pulse breakthrough, it is necessary to introduce
a receiver dead time during acquisition. This approach is
known to affect both the shape and the intensity of the
resulting frequency spectrum (Fourier-Transform of the
FID) since the FID is truncated at early sampling times. If
the shape of the FID components, representing the different
phases (crystalline, intermediate and amorphous), were a
priori known, a linear combination of these components
could be fitted directly to the observed (truncated) FID.
Unfortunately, these theoretical FID shapes are not a
priori known. However, in Section 3.1 we will present
some analytical functions [13,14,18], which are known
to give reasonable representations of the different FID
components.

3.1. The crystalline phase

Pake [19] derived an analytical expression for the NMR
frequency spectrum of coupled spin 1/2 nuclei. Due to the
inherent NMR dilemma related to r.f.-pulse breakthrough
[20], this theoretical function can — in many cases — not
be fitted directly to the frequency spectrum. Rather, one may
derive the inverse Fourier Transform of the Pake function,
which will represent the observed signal intensity in the
time domain (FID). Look and co-workers [21] presented
an analytical solution to this enigma, which has been used
recently with success [13,14,18].
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whereP�t� defines the normalized time dependent FID. The
a parameter is related to the distance,RH–H, between the two
nearest neighbor protons of the methylene group, andb
represents the width of the Gaussian broadening function,
which takes account of dipole–dipole interactions between
protons on different methylene groups.C�x� andS�x� are the
so-called Fresnel functions, which are defined as simple
integral equations [22].

3.2. Non-crystalline phases

In contrast to the crystalline phase of PE, the amorphous
and intermediate phases are evidenced by an increased fluc-
tuation in the molecular mobility, which is expected to
modify the shape of the NMR spectrum. A theoretical
expression for the FID of these phases has been presented
by Brereton et al. [23], and successfully applied in a recent
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Fig. 1. Observed1H FIDs of PE during isothermal crystallization at 392 K. The FIDs are acquired at times (min): 4, 4.5, 5, 5,5, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12.5, 13.5, 14, 16.5, 19, 21.5, 24, 29, 34,
39, 75.5, 146.5, 249 and 443.75 (from top to bottom).



investigation on PE at room temperature [18]. Dadayli et al.
[24] and Kristiansen et al. [13,14] have shown empirically
that the FID of the amorphous phase can be well approxi-
mated by the sum of an Exponential function and a
Weibullian function:

W�t� � exp 2
t

T2

� �n� �
�2�

where the normalized Weibullian functionW(t) ranges
between a pure Exponential�n� 1� and a pure Gaussian
�n� 2� function.

3.3. The Avrami equation

To describe the relative change in phase composition
(amorphous, intermediate and crystalline phases) of PE
during the crystallization process a slightly modified version
of the Avrami equation [25,26] has been adopted:

QX�t� � QX∞ 2 �QX∞ 2 QX0� exp�2�kt�b� �3a�
whereQX�t� defines the fraction of phase X formed after
time t. The parametersk andb represent the rate constant
and the Avrami exponent, respectively. The former para-
meter depends on nucleation rate and growth rate, while
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Fig. 2. (a) The four fitted FID-components (PWEE-model) sample B at the end of the isothermal crystallization at 399 K;V experimental, the thin line through
the points is the fit.P, E1, W andE2 curves are the decaying curves from left to right, or fast and slow. (b) Residual of the fit.



the latter parameter depends on the nature of nucleation, the
rate of polymer transport to the growing crystal, and the
growth geometry [27]. In the original work by Avrami,
the parameterQX∞ represents the fraction of crystalline
material formed at infinite time and was set equal to 1. In
general, however,QX∞ of the crystalline phase may be less
than 1 [27].QX0 represents the amount of phase X at time
t � 0: For any phase X, which is initially zero�uX0 � 0�;
Eq. (3a) simplifies to the Avrami equation.

Other researchers in the field have suggests that the crys-
tallization process cannot be simply described by a single-
stage process [10,28]. Rather, a two-stage process has to be
invoked. Such a two-stage process can be described math-
ematically by a two-step function composed of two time
functions in series. If the fraction undergoing secondary
crystallization is represented by the functionL�t�; the
following generalized equation,C�t�; will predict the
mass fraction of phase X at any timet during the crystal-
lization process:

cX�t� � QX�t�1 LX�t� �3b�
From the observed time evolution of crystallization at
longer times the following empirical function,LX�t�; was
chosen [14].

LX�t� �
0 t , td

AX 1 BX ln �t� t $ td

(
�3c�

whereAX andBX are constants. A logarithmic time evolu-
tion of the secondary crystallization process represents an
empirical model first proposed and applied by Kovacs [29]
using density measurements. The time parametertd defines
the onset of the secondary crystallization regime.

Recently a new model for the crystallization has been
suggested in the literature [49–51], suggesting a spinodal
decomposition caused by density fluctuations due to phase
separation between alltrans and, trans–gaucheconforma-
tions. In this theory, it is assumed that the interchain order-
ing and the intrachain ordering happens at different times,

while it in the classical theory is assumed that they happen at
the same time. The kinetics of the crystallization process is,
however, similar to the Avrami process [49], the Avrami
function was therefore used in the analysis of the phase
changes.

4. Results and discussion

4.1. Isothermal crystallization of PE-FID analysis

Fig. 1 shows a series of FID signals of molten PE (sample
A) as a function of time after being placed within the magnet
at 392 K. The FID changes shape with time due to onset of
crystallization. The formation of a crystalline/intermediate
phase is recognized by the relative increase of a fast decay-
ing FID component�t , 20ms� with increasing reaction
time. The significantly large residuals observed at times
less than 4ms are caused by r.f.-pulse breakthrough (Fig.
1). These initial data points were excluded from the model
fit in order to obtain more reliable and quantitative results. A
more extensive discussion on this topic can be found in
recent published work [13,18].

The theoretical FID applied in this work is simply
denoted “PWEE” where the capital letters represent the
Pake function (P; Eq. (1)), the Weibullian function (W;
Eq. (2) with 1# n # 2�; and the two Exponential functions
(E; Eq. (2) with n� 1�: This model equation was fitted to
the observed FID by a non-linear least-squares technique
and is illustrated in Fig. 2. Due to the small amount of
crystalline phase formed at the early stage of the crystal-
lization process, the two parametersa andb of the Pake
function and the rate constant 1/T2,E1

of the fast decaying
Exponential function, could not be reliably determined for
sample A. In recent published work [13], the parametersa
andT2, E1

were shown to vary only slightly with temperature
within the temperature region 360–393 K. Hence, within
the narrow temperature region investigated in this work
(391–395 K) the parametersa and T2, E1

were considered
to be constant and equal toa � 1:15× 105 s21 andT2; E1

�
26ms [13] at all times during the crystallization process. For
sample B, the higher crystallinity allows these parameters to
be determined by model fitting, the results of this will be
discussed later. It must be emphasized, however, that the
implicit assumption that the Pake function uniquely defines
the crystalline phase of PE is somewhat ambiguous [13,14].

The exponential function (E1) having the shorter spin
relaxation time was assigned to the intermediate phase
[13,14]. It may well be, however, that a fraction of this
FID-component is part of a more mobile fraction of the
crystalline phase, or an ordered mesophase which
accidentally has the sameT2 as the intermediate phase (E1).

Before ending this discussion, it is worth emphasizing
that the crystallinity at room temperature determined by
the present NMR technique is in agreement with the crystal-
linity derived by other methods [18]. A more detailed
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Fig. 3. Relative intensities of the four fitted FID-components (PWEE-
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investigation on this particular topic is in progress and will
be reported.

The remaining two components (W and E2) of the
“PWEE”-model reveal significantly longer spin–spin
relaxation times and are tentatively assigned to a phase
composed of more mobile molecules and will be discussed
in Section 4.2.

The relative distribution of the different FID-components
(P, W, E1 andE2), as derived by model fitting, is a function
of crystallization time and is illustrated in Fig. 3 (sample B
at 400 K). The intensity distribution of the FID components
as a function of crystallization time suggests that about 30%
of the PE remains mobile (amorphous phase) after 2 h of
isothermal crystallization. During the same time interval the
amounts of crystalline and intermediate phases increase
monotonically up to approximately 50 and 20%, respec-
tively. The relative distribution of phases with time during
isothermal crystallization at 394 K of sample A can be
found in Ref. [14]. The intensity of the Pake-function (P)
of this sample was approximately equal to or smaller than
the intensity of the Exponential function (E1) during the
early stage of crystallization. However, at later crystalliza-
tion times the intensity of the former became somewhat
larger. The relative intensity of the fast decaying Exponen-
tial component (E1) became approximately equal to the rela-
tive intensity of the intermediate phase of PE as observed by
Kitamaru [12].

4.2. The mobile phase of PE

The Weibullian (W) and the Exponential (E) functions of
the “PWEE” model are tentatively assigned to a more
mobile (on a molecular level) phase in accordance with
results reported by Bremner et al. [30], who used three
Exponential functions to fit the FID of molten, low-mole-
cular weight PE. The three FID-components were assigned
to a non-network fraction, an amorphous entangled network
fraction, and an ordered or high segmental-density fraction,
in order of decreasing spin–spin relaxation times. Also,

Brereton et al. [23] have suggested that the FID of melted
polymers is not single exponential, as a result of
entanglement.

In semi-crystalline PE, the existence of lamella structures
may reduce the molecular mobility of the amorphous phase,
implying that itsT2 may be less thanT2 of the completely
molten sample.

In this work, the FID of molten PE prior to crystallization
can be approximated by a sum of an Exponential func-
tion (E2) and a Weibullian function (W). Moreover, two
slow decaying FID components observed at any time
during crystallization of the melted PE samples investi-
gated in this work can also be approximated by a linear
sum of these same two functions. Also, within the
temperature range 391–395 K, a linear combination of
these same two functions has been found to give a good
representation of the amorphous phase FID of a non-
melted PE [13].

Since only two FID components are needed to character-
ize the more mobile molecular phase, at any time during the
crystallization process, an average spin–spin relaxation
time T2,av is defined:

�W 1 E2� 1
T2;av

�W
1

T2;W
1 E2

1
T2;E2

�5a�

whereT2,W andT2,E2
represent the spin–spin relaxation times

of the two FID-components of intensityW andE2, respec-
tively.

Starting with a completely molten PE sample, we will
assume that its average spin–spin relaxation timeT2,av as a
function of crystallization time can be expressed by:

1
T2;av�t� � f

1
TA

2;av

1 �1 2 f � 1
TM

2;av
�5b�

wheref � A=�A 1 M� defines the mole fraction at any time
during crystallization of amorphous phase (A) within the
mobile phase �A 1 M�: Both A and M are time

P.E. Kristiansen et al. / Polymer 42 (2001) 1969–19801974

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time (min)

T
2a

v
(s

)

Fig. 4.T2,av vs. time: × 394.5 K;O 393.5 K;V 391 K sample A. The solid lines obtained from Eq. (5c). See text for further details.



dependent functions, TX
2;av represents the average

spin–spin relaxation time of phase X (� A and M)
and is assumed to be time independent. Hence, at the
start of crystallization the sample is completely molten
�M � M0�; and transforms during crystallization into
amorphous, crystalline and intermediate phases. In the
intermediate time regime the mobile phase is composed
of a mixture of the two phases A and M.

Assuming the intensity of molten (M) and amorphous
phases (A) during the isothermal crystallization process
to follow an Avrami type of function (Eq. (3a–c)),
the following model equation can be derived (see
Appendix A)

T2;av�t� � T2;A T2;M{uA∞ 2 �uA∞ 2 1� exp�2�kt�b�}
{ uA∞ 2 uA∞ exp�2�kt�b�} T2;M 1 T2;A exp�2�kt�b�

�5c�
The average spin–spin relaxation timesT2,avof the mobile

phase as a function of time during isothermal crystallization
at 391, 393.5 and 394.5 K of sample A are shown in Fig. 4.
Sample B showed similar time dependence. The solid
curves are calculated from Eq. 5(c) by applying thek, b
andtd parameters derived from previous Avrami model fits
to the intensity of the mobile phase as a function of tempera-
ture. Keeping in mind that the solid curves in Fig. 3 repre-
sent model fits to Eq. 5(c) with only two fitting parameters
�TA

2;avand TM
2;av� they give a reasonable support to the

assumption that the mobile phase�A 1 M� is composed of

two characteristic and different phases, a molten phase (M)
and an amorphous phase (A).

At longer crystallization times, i.e. after the primary crys-
tallization is completed and the molten phase is no longer
present,T2,av still decreases slightly with time (approxi-
mated by a logarithmic time dependence). This reduction
in T2,av signifies a reduction of the molecular mobility of the
amorphous phase and is tentatively explained by a lamella
thickening, which affects the molecular mobility of the
amorphous phase. This assumption is indirectly supported
by noting that: (1) the signal intensity of the intermediate
phase is approximately constant; and (2) the signal intensity
ratio between the crystalline (Pake function) and the inter-
mediate (Exponential function;E1) phases increase during
crystallization (Fig. 5).

According to the “free volume” theory, the change in
volume/density of the amorphous part of the polymer is
assumed to be a result of change in mobility [31]. We
tend to believe that this reduction in mobility will reduce
not only the free volume of the amorphous phase, but also its
density, as compared to the melt.

Fig. 6 shows that the parameterm of the Weibullian (W)
function Eq. (2) changes with crystallization time from
approximately 2 (Gaussian) at the start of the crystallization
process, to a value somewhat larger than 1 (Lorenzian)
during the primary crystallization time-regime. The physi-
cal reason for deriving ann value different from 1 or 2 is
somewhat controversial. One explanation, might be thatT2

is not characterized by a single spin–spin relaxation time
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but rather by a distribution of relaxation times, suggesting
that a distribution of molecular mobility within the mobile
phase exists.

4.3. Characterization of the crystalline/intermediate phases
during the early stage of crystallization

As previously pointed out, the parametersa andb of the
Pake function and the spin–spin relaxation rate�1=T2;E1

� of
the fast decaying Exponential function (E1) of sample A
cannot be reliably determined due to the small amount of
crystalline/intermediate phases formed during the initial
part of the crystallization process. However, performing
the same type of NMR experiments on sample B it was
possible to fit the “PWEE” model without introducing any
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model constraints ona , b and T2;E1
: Fig. 7a and b shows

how thea andb parameters of the “Pake”-function and the
spin–spin relaxation�T2;E1

� of the Exponential function
change during crystallization. The solid curves are calcu-
lated by simple exponential fits and have no theoretical
significance. As can be seen, only the latter two parameters
(b and T2,E1

) change significantly with time and approach
the limiting values�t � ∞� of 5 × 104 s21 (b) and 33ms
(T2,E1

), respectively. These values are — within experimen-
tal error — of the same order of magnitude as reported in
previous work [13]. The parametera is approximately
constant (1.15× 105 s21) and independent of time and
equals thea -value determined for PE in previous work
[13,14]. This suggests that the inter-nuclear distance, join-
ing two protons on the same methylene carbon, does not
change with crystallization time.

From the deriveda andb values, the second moment,
M2, of the Pake function can be estimated according to Eq.
(6) [21]:

M2 � 4
5
a2 1 b2 �6�

A plot of the second moment as a function of crystallization
time is depicted in Fig. 7c (a was kept constant and equal to
1.15× 105 s21) and suggests that the molecular motion
within the crystalline phase decreases slightly with crystal-
lization time. The motional correlation timet is estimated
from Eq. (7):

t � l����
M2
p tan

p

2
M2

M0
2

" #
�7�

whereM0
2�� 2:28× 1010 s22� is the limiting, rigid-lattice

second moment [13]. Eq. (7) is derived from the
Bloembergen, Purcell and Pound theory [32] withl ��������

8 ln 2
p

[33]. Applying Eq. (7) shows that the molecular
correlation time increases with crystallization time from
22.3ms to approximately 26.3ms, i.e. an increase of
approximately 18%. It must be emphasized that the
molecular motional process within the crystalline
phase is solely determined by the inter-molecular
interaction, since only theb term Eq. (1) varies with
time.

A similar analysis can be performed on the intermediate
phase by replacing

����
M2
p

by 1/T2 in Eq. (7) [13]. This
approach shows that the correlation time of the intermediate
phase increases with crystallization time from 5.9ms to
approximately 6.3ms, and represents a slight decrease in
the molecular motional freedom of approximately 6%.
Note that the molecular motion within the intermediate
phase is approximately four times faster than within the
crystalline phase.

The crystalline and intermediate phases observed
during the crystallization (Fig. 5) and the mobility of
the two phases has to our knowledge not been reported
by others. Terrill et al. [49] observed, however, that

SAXS and WAXS measurements gave different onset
of crystallization. In SAXS measurements some degree
of order was observed before the method showed scat-
tering. This was explained by phase separation of an
ordered interchain and a random conformation before
crystallization. This X-ray observation was the back-
ground for the developments of the spinodal crystalliza-
tion theory [49–51].

4.4. Crystallization rate as a function of temperature

Fig. 8 shows how the signal intensity of the crystalline
phase (P) changes with time during isothermal crystalliza-
tion of the initially molten sample (sample A) at tempera-
tures 391, 392, 393, 393.5, 394, 394.5 and 395 K (from left
to right). Analogous isothermal crystallization curves have
been obtained from density measurements and reveal —
qualitatively — the same patterns as shown in Fig. 8
[2,34,35]. To gain more information on the isothermal crys-
tallization process, the generalized Avrami model (Eq. (3a–
c)) was adopted and fitted to the data in Fig. 8. The results of
this analysis are summarized in Fig. 9, showing the tempera-
ture dependence of: (A) the Avrami exponent (b ); (B) the
time at which the secondary crystallization is initiated (td);
and (C) the Avrami rate constant (k). The slight decrease in
b with increasing crystallization temperature (Fig. 9(a))
suggests that the morphology changes somewhat with crys-
tallization temperature. For instance, it is generally believed
that formation of spherulite and disk shapes are character-
ized by a value ofb equal to 3 and 2, respectively. A change
in b with temperature has been reported by others [2,34,35].

The finding ofb factors different from integer numbers is
somewhat controversial since it is inconsistent with the
originally derived Avrami model [25,26]. However, experi-
ments resulting inb values different from integer (and half
integer) have been reported [36–39].

The increase of td with decreasing crystallization
temperature (Fig. 9(b)) suggests that the secondary
crystallization process starts at a later time with increasing
super-cooling. As shown in Fig. 5 the signal intensity ratio
between the crystalline (Pake function) and the intermediate
(Exponential function;E1) phases increase during the
primary crystallization (prior totd). It is not known whether
this is due to a change in the thickness of the lamella formed
or a thickening process.

The expected increase in crystallization rate with increas-
ing super-cooling is clearly illustrated in Fig. 9(c), which
shows the dependence of the Avrami crystallization rate (k)
on crystallization temperature of the initially molten PE
sample.

According to general crystallization theory [40], the rate
of crystallization is determined by a competition between
crystal growth rate and molecular transport rate. From ther-
modynamic arguments Eq. (8a) can be derived and shows
how the (linear) growth rate (G) depends on crystallization
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temperature (T).

G� G0 exp 2
Up

R�T 2 T∞�

" #
exp 2

Kg

TDTf

� �
�8a�

Up is the activation energy for molecular transport in the
vicinity of a growth front, R is the gas constant,T∞ is the
temperature where relevant molecular transport becomes
ineffective, DT�� T0

m 2 T� represents the super-cooling,
and T0

m is the equilibrium melting temperature. The para-
meter f is a correction factor, which compensates for the
temperature change of the heat of fusion.Kg is a rather
complex parameter involving the layer thickness of the crys-
tallizing lamella, the crystallization enthalpy, the surface
free energy of the fold surface and the free energy of the
side surfaces [40,41]. Generally,Kg is expected to depend
on the actual isothermal crystallization temperature [40].

To our knowledge, no theoretical or empirical relation
between the Avrami rate constant (k) and the linear growth
rate (G) has been reported. However, it seems — in parti-
cular cases — intuitively reasonable to expect the Avrami
rate constant to depend on crystallization temperature in an
analogous manner as described by Eq. (8a), i.e. by assuming
G to be proportional tok:

G� lk �8b�
wherel is a constant.

Inserting Up � 6:3 kJ=mole [42] andT∞ � 160 K [43],
the first exponential term in Eq. (8a)�exp b 2 Up

=R�T 2
T∞�c� changes with less than 6% within the temperature
region investigated in this work. Hence, this term can be
considered constant and independent of temperature. The

melting temperature of sample A,T0
m; can be estimated

from Eq. (9) [44]:

1
T0

m;ub

2
1

T0
m
� R

DHu
ln �XA� �9�

in which T0
m;ub �� 418:5 K� [45] and DHu �� 3970 J=mol�

[46] are the melting temperature and the heat of melting
of an unbranched PE, respectively.XA is the co-monomer
content.T0

m was calculated to be 415.3 and 418.2 K for
sample A and sample B, respectively. The factorf, which
can be approximated by the expressionf < 2T=�T 1 T0

m��
[41], varies by less than 1% within the crystallization
temperatures region reported in this work and can be set
equal to one. Combining Eq. (8a and b) gives the following
simple expression for the temperature dependence of the
Avrami rate constantk:

k � k0 exp 2
Kg

TDT

� �
�10�

wherek0 is a constant. The solid curve in Fig. 9(c) represents
non-linear least squares fit to Eq. (10) withKg �
1:33× 105 K2: This is more than 25% less than the theore-
tical value of Kg �� 1:8 × 105 K2�; as calculated by
Hofmann [47]. For sample B aKg � 1:79× 105 K2 (95%
confidence interval; 1.44× 105–2.15× 105 K2) was deter-
mined and is in excellent agreement with the theoretical
value. Keeping in mind that the uncertainty in the derived
rate constants (k) is less than 3% and that the uncertainty in
temperature is approximately 0.5 K, the model fit in Fig.
9(c) is rather poor. However, dividing the temperature inter-
val into two regions, Eq. (10) can be fitted to each region as
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Fig. 8. Signal intensity of the pseudo-crystalline phase�P 1 E1� as a function of time during isothermal crystallization of melted PE at temperatures 391, 392,
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shown by the dotted curves in Fig. 9(c) and results in a
significantly better fit. The correspondingKg value was
determined to be 1.74× 105 K2 (95% confidence interval;
1.46.105–2.01× 105 K2) and 0.85× 105 K2 (95% confi-
dence interval; 0.41× 105–2.11× 105 K2), respectively.
Such a change inKg within different temperature regions
has been reported elsewhere. For instance, Lambert and
Phillips [41,48] have reported on a change inKg for PE at
approximately the same temperature as observed in this
work. The temperature at whichKg changes has been
claimed to depend on both molecular weight [48] and on
the content of chain-branching [41,48].

Considering the limited number of data points and the
inherent assumptions made in deriving Eq. (10), one should
be careful in putting to much weight on the derivedKg

values. Also, the assumption of a linear relation between
the Avrami rate constantk andG (Eq. (8b)) may be ques-
tionable and needs further experimental and theoretical
support. Additional experimental data on PE samples with
different degree of branching and molecular weights are
necessary to justify Eq. (10).

4.5. Requirements for probing crystallization by the “FID-
analysis” technique

Temperature regulation control, heat transfer and inher-
ent spin–lattice relaxation times of the different phases of
PE are crucial and decisive parameters when attempting to
probe isothermal crystallization by the present NMR
technique.

A number of relaxation time measurements (T1 andT2) on
melted and semi-crystalline PE has been reported in the
literature [15,17], suggesting that the spin–lattice relaxation
time is of the order of one second. Hence, a quantitative
sampling of a FID signal (1 scan) can be obtained within
approximately 5 s. If the number of measurements required
to obtain a reliable crystallization curve (signal intensity vs
crystallization time) is set to 20, a minimum experimental
time of 100 s is obtained.

Also, the crystalline growth rate and crystalline morphol-
ogy may affect the temperature region amenable for NMR
measurements. FromKg and b obtained in this work, a
region of super-cooling amenable for NMR measurements
can be estimated to be approximately 30 K. Using the same
approach as just outlined and assuming the upper time limit
to be 12 h (primary crystallization should not take more than
12 h), an estimated temperature region of super-cooling of
approximately 9.3 K can be estimated. Thus — in practice
— the present NMR technique will enable isothermal crys-
tallization studies to be performed within a super cooling
range of approximately 10 K.
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Appendix A

Assuming the time dependence of the NMR signal inten-
sity (I) of molten (M) and amorphous (A) phases to be
described by an Avrami type of equation (Eq. (3a)) during
isothermal crystallization within the primary crystallization
time regime, we can write:

IX�t� � IX∞ 2 �IX∞ 2 IX0� exp�2�kX t�bX � �A1�
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Fig. 9. Fitting of Eq. (3c) to the pseudo-crystalline phase�P 1 E1� and the
amorphous phase�W 1 E2�: (a) Shows the Avrami exponent (b ) as a func-
tion of temperature. (b) Onset of the secondary crystallization (td) with
temperature. (c) Avrami crystallization rate (k) as a function of temperature.
W Measuredk values; — — fit of Eq. (8) to all the data points; — fit to the
high-temperature region;– – – – fit to thelow-temperature region.



where X�M and A. The other symbols are defined
previously (see Eq. (3a)). Since the mobile phase, repre-
sented by�A 1 M�; is completely molten at the start�t �
0� of the crystallization we can write M� M0 and A� 0:
Assuming the same mobile phase to be completely amor-
phous at the end�t � ∞� of the crystallization process we
can setA� A∞; andM � 0; hence:

IA�t� � IA∞�1 2 exp b 2 bkA t�bA cc �A2�

IM�t� � IM0
exp b 2 �kM t�bM c �A3�

We have previously noted that the overall mobile phase can
be well approximated by a single Avrami equation of the
form:

I � A∞ 2 �A∞ 2 M0� exp�2�kt�b� �A4�
where

I � IA 1 IM �A5�
Inserting Eqs. (A2)–(A4) into Eq. (A5) givesbA � bM � b
andkA � kM � k: Hencef in Eq. (5b) can be written:

f � A
A 1 M

� IA∞�1 2 exp�2�kt�b��
IM0

exp�2�kt�b�1 IA∞�1 2 exp�2�kt�b��

� uA∞�1 2 exp�2�kt�b��
uA∞ 1 �1 2 uA∞� exp�2�kt�b�

�A6�
whereuA∞ � IA∞=IM0: Inserting Eq. (A6) into Eq. (5b) and
rearranging gives Eq. (5c).
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